15 research outputs found

    Climate Responsive Design and the Milam Residence

    Get PDF
    Energy conservation and efficiency is an essential area of focus in contemporary building design. The perception that the designers of buildings during the Modernist period of architecture ignored these principles is a false one. The present study, an examination of Paul Rudolph’s Milam Residence, a masterpiece of American residential architecture, is part of a larger project endeavoring to create a knowledge base of the environmental performance of iconic modernist homes. A critical examination of the Milam House allows insight into specific design characteristics that impact energy efficiency and conservation. Located in Ponte Vedra Beach, Florida, the Milam Residence was constructed in 1962. It was the last of a series of Florida residences designed by Rudolph, Chairman of the Department of Architecture at Yale University (1958–1965). The structure’s form is strongly related to its location on a subtropical beachfront. This paper presents a detailed analysis of the building’s solar responsiveness. Specifically, we examine design strategies such as orientation and sunscreening and their effect on daylighting, shading, and heat gain. The analysis is based on parametric energy modeling studies using Autodesk’s Ecotect, an environmental analysis tool that allows simulation of building performance. While the initial target of the program was early design, the program allows the input of complex geometries and detailed programming of zones, materials, schedules, etc. The program\u27s excellent analyses of desired parameters are augmented by visualizations that make it especially valuable in communicating results. Our findings suggest that the building, as built and situated on the site, does take advantage of daylighting and solar shading and does so in both expected and unexpected ways

    Impact Assessment in the Process of Propagating Climate Change Uncertainties into Building Energy Use

    No full text
    Buildings are subject to significant stresses due to climate change and design strategies for climate resilient buildings are rife with uncertainties which could make interpreting energy use distributions difficult and questionable. This study intends to enhance a robust and credible estimate of the uncertainties and interpretations of building energy performance under climate change. A four-step climate uncertainty propagation approach which propagates downscaled future weather file uncertainties into building energy use is examined. The four-step approach integrates dynamic building simulation, fitting a distribution to average annual weather variables, regression model (between average annual weather variables and energy use) and random sampling. The impact of fitting different distributions to the weather variable (such as Normal, Beta, Weibull, etc.) and regression models (Multiple Linear and Principal Component Regression) of the uncertainty propagation method on cooling and heating energy use distribution for a sample reference office building is evaluated. Results show selecting a full principal component regression model following a best-fit distribution for each principal component of the weather variables can reduce the variation of the output energy distribution compared to simulated data. The results offer a way of understanding compound building energy use distributions and parsing the uncertain nature of climate projections

    Building to Net Zero in the Developing World

    No full text
    This paper discusses the design of a zero energy home in Panama. The standards for zero site energy as well as other performance factors are used as the basis for the analysis. A description of the construction type, energy use, active and renewable systems, and other features of this particular zero energy building are provided to facilitate a better understanding of efficient and sustainable residential design for hot-humid climates. This understanding is critical to facilitating net zero energy building development in developing regions of the world

    Climate Responsive Design and the Milam Residence

    No full text
    Energy conservation and efficiency is an essential area of focus in contemporary building design. The perception that the designers of buildings during the Modernist period of architecture ignored these principles is a false one. The present study, an examination of Paul Rudolph’s Milam Residence, a masterpiece of American residential architecture, is part of a larger project endeavoring to create a knowledge base of the environmental performance of iconic modernist homes. A critical examination of the Milam House allows insight into specific design characteristics that impact energy efficiency and conservation. Located in Ponte Vedra Beach, Florida, the Milam Residence was constructed in 1962. It was the last of a series of Florida residences designed by Rudolph, Chairman of the Department of Architecture at Yale University (1958–1965). The structure’s form is strongly related to its location on a subtropical beachfront. This paper presents a detailed analysis of the building’s solar responsiveness. Specifically, we examine design strategies such as orientation and sunscreening and their effect on daylighting, shading, and heat gain. The analysis is based on parametric energy modeling studies using Autodesk’s Ecotect, an environmental analysis tool that allows simulation of building performance. While the initial target of the program was early design, the program allows the input of complex geometries and detailed programming of zones, materials, schedules, etc. The program's excellent analyses of desired parameters are augmented by visualizations that make it especially valuable in communicating results. Our findings suggest that the building, as built and situated on the site, does take advantage of daylighting and solar shading and does so in both expected and unexpected ways.climate responsive design; energy modeling; Milam Residence

    About the Authors

    No full text
    A S H R A E J o u r n a l a s h r a e . o r g F e b r u a r y 2 0 1 2 Building integrated aquaculture (BIAq) involves taking advantage of the interdependencies between a smallscale indoor recirculating aquaculture system (RAS) and the environment maintained by the building to maximize energy efficiency and optimize operations. In a BIAq approach, gained efficiencies have the potential to offset the energy intensity of recirculating aquaculture and ultimately make local-scale aquaculture more viable. From the twin perspectives of increasing food and energy security, as well as reducing greenhouse gas emissions and environmental waste, the benefits of applying green building principles to meet the needs of aquaculture facilities are clear. We identify areas where a BIAq approach might increase efficiency and reduce operating costs. Our focus is on processes and design decisions that have the greatest potential for energy conservation in the heavily populated temperate regions of the world

    The Relationship between Urban Density and Building Energy Consumption

    No full text
    Neighborhood characteristics influence natural urban energy fluxes and the choices made by urban actors. This article focuses on the impact of urban density as a neighborhood physical parameter on building energy consumption profiles for seven different metropolitan areas in the United States. Primarily, 30 × 30 m2 cells were classified into five categories of settlement density using the US Geological Survey’s National Land Cover Dataset (NLCD), the US Census, and Census Block data. In the next step, linear hierarchical spatial and non-spatial models were developed and applied to building energy data in those seven metropolitan areas to explore the links between urban density (and other urban form parameters) and energy performance, using both frequentist and Bayesian statistics. Our results indicate that urban density is correlated with energy-use intensity (EUI), but its impact is not similar across different metropolitan areas. The outcomes of our analysis further show that the distance from buildings within which the influence of urban form parameters on EUI is most significant varies by city and negatively changes with urban density. Although the relationship between urban density parameters and EUI varies across cities, tree-cover area, impervious area, and neighborhood building-covered area have a more consistent impact compared to building and housing density
    corecore